Specification of Thermoelectric Module

TEC1-12715

Description

The 127 couples, 50 mm × 50 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70 °C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16.0	17.2	Voltage applied to the module at DT _{max}	
I _{max} (amps)	15.0	15.0	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	150.2	164.2	Cooling capacity at cold side of the module under DT = 0 °C	
AC resistance (ohms)	0.80	0.88	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 16AWG leads, PVC insulated Negative lead wire (Black) 125 + 1Cold side:To See ordering option 7 See ordering option Hot side:Th See ordering option A

Manufacturing Options

A. Solder:

- 1. T100: BiSn (Melting Point=138°C)
- 2. T200: CuSn (Melting Point= 227 °C)

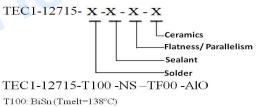
B. Sealant:

- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing

C. Ceramics:

- 1. Alumina (Al₂O₃, white 96%)(AlO)
- 2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

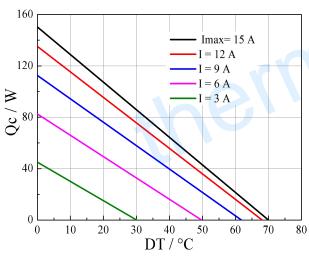

- 1. Blank ceramics (not metalized)
- 2. Metalized (Copper-Nickel plating)

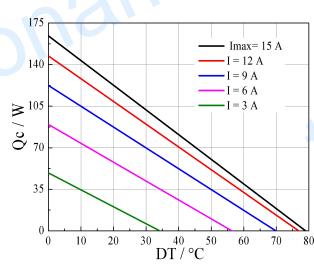
Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	(mm)	Parallelism (mm)	Standard/Optional length
TF	0:4.0±0.1	0:0.05/0.05	125±1/Specify
TF	1:4.0±0.05	1:0.025/0.025	125±1/Specify

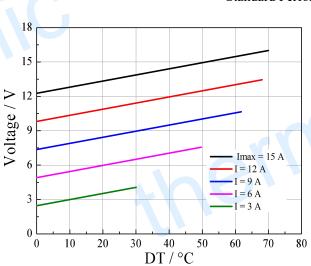
Eg. TF00: Thickness 4.0 ± 0.1 (mm) and Flatness 0.05 / 0.05 (mm)

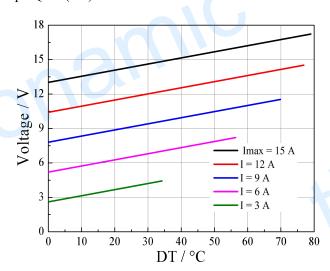
Naming for the Module

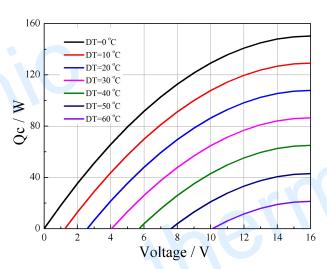

NS: No sealing AlO: Alumina (Al2O3, white 96%) TF00: Thickness ±0.1(mm) and Flatness/Parallelism: 0.05/0.05 (mm)

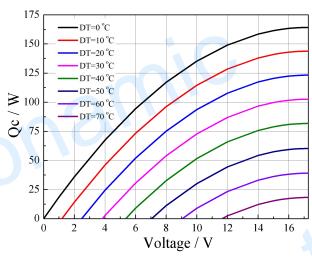

Specification of Thermoelectric Module

TEC1-12715

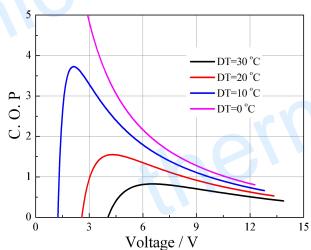


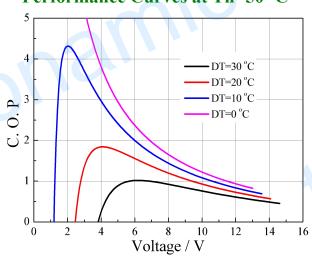

Performance Curves at Th=50 °C



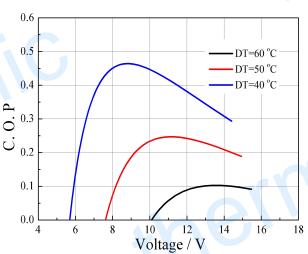

Standard Performance Graph Qc= f(DT)

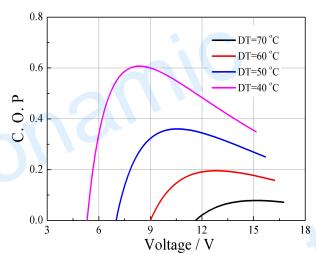
Standard Performance Graph V = f(DT)




Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module TEC1-12715





Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100°C
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.