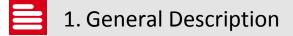


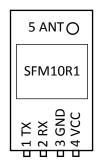
Features

- Fully integrated, single-chip RF transceiver (SIGFOX compliant)
- Based on WISOL SFM10R1 chip
- Small dimensions 24.31 x 14.97 mm
- Controlled by simple AT commands
- Only 4 wire connection
- U.FL and DuPont compatible
- System-on-chip solution including SIGFOX related protocol handling for modem operation
- ON[®] microcontroller core with embedded firmware, SIGFOX, protocol stack and ID/PAC
- Supports up- and downlink operation, i.e., transmit and receive of data telegrams with SIGFOX base stations in EU
- Typical operating frequency uplink 868.130MHz, downlink 869.525MHz
- Low current consumption 65mA during transmit and 15mA during receive operation
- Typical sleep mode current 2µA at VCC +3.3V and +25°C
- UART interface for data access and transceiver configuration and control
- Supply voltage ranges from 1.8V to 3.6V
- Temperature range –30°C to +85°C


Applications

SIGFOX[™] compatible modem for long-range, low-power and low-cost applications using the SIGFOX network

- Home and building automation
- Alarm and security systems
- Smart environment and industrial
- Smart parking
- Tracking
- Metering


1.1. Introduction

The LPWAN Sigfox node 868 is a highly integrated, low-power RF transceiver with an integrated ON[®] microcontroller for applications using the wide area SIGFOX[™] network.

The LPWAN Sigfox node 868 is partitioned into three sections: an RF front end, a digital baseband and the low power microcontroller. The product is designed for the EU ISM frequency band in the range of 868.0MHz to 868.6MHz and 869.4MHz to 869.65MHz. The external part count is kept to a minimum due to the very high level of integration in this device. By combining outstanding RF performance with highly sophisticated baseband signal processing, robust wireless communication can be easily achieved.

The UART interface enables external control and device configuration.

1.2. Pinning

Pin No.	Pin Name	Description
1	ТХ	UART TX output.
2	RX	UART RX input.
3	GND	Power ground
4	VCC	Power VCC
5	ANT	Antenna input and output

UART configuration is 9600baud, 8 data bits, 1 stop bit, no parity, and no flow control.

1.3. Applications

This section provides application examples for the LPWAN Sigfox node device.

1.3.1. Example A

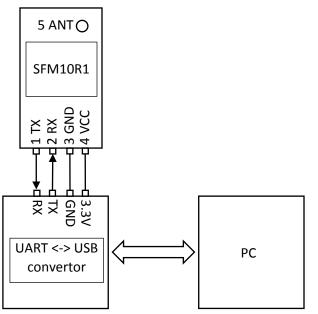
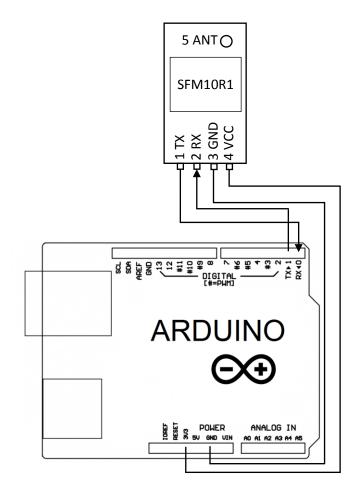
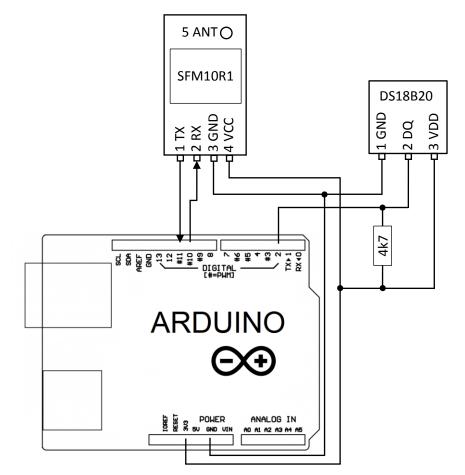



Figure shows basic LPWAN Sigfox node connection to generic microcontroller. In this case the microcontroller sends AT commands to node directly thru the UART interface (9600baud). Is recommended to use full duplex UART. In case of using half duplex, AT commands has to be ended only with one of '\r' or '\n' not both. Because if you send "AT\r\n" the Sigfox node starts sending "OK" instantly after it receive '\r', but microcontroller is still sending byte '\n'.


1.3.2. Example B

This example shows connection between LPWAN Sigfox node and computer. In this case is used UART to USB convertor, whose driver creates virtual COM port in computer operating system. Thru this port is possible to send AT commands to the Sigfox node. Communication speed is 9600baud. AT commands has to be written in upper case.

1.3.3. Example C


This is the simplest connection with the shortest code that is needed. After power supply connected to Arduino board message 0x01020304 will sent to Sigfox network.

```
void setup(void){
  Serial.begin(9600);
  Serial.println("AT$SF=01020304");
}
void loop(void){
```

}

1.3.4. Example D

This image depicts connection of LPWAN Sigfox node to the Arduino for measuring temperature by sensor DS18B20. Communication between Arduino and Sigfox node is achieved by SoftwareSerial library (pins D10 and D11), therefore is hardware UART (pins D0 and D1) free for communication between Arduino and computer. Temperature sensor DS18B20 use OneWire bus that is initialized at pin D2.

The following code for Arduino reads temperature every 11 minutes and send it to the Sigfox network.

#include <OneWire.h>
#include <DallasTemperature.h>
#include <SoftwareSerial.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS);


```
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
```

```
SoftwareSerial mySerial(10, 11); // RX, TX
```

```
void measure(){
    //Send the command to get temperatures
    sensors.requestTemperatures();
    char str[20];
    float t = sensors.getTempCByIndex(0);
    int ti = (int)t;
    int td = (((int)(t*100))%100);
    sprintf(str, "AT$SF=%02X%02X\n", ti, td);
    Serial.print(str);
    mySerial.print(str);
}
```

```
void setup(void){
    // start serial port
    Serial.begin(9600);
    Serial.setTimeout(10);
```

```
mySerial.begin(9600);
mySerial.setTimeout(10);
```

```
// Start up the library
sensors.begin();
```

```
measure();
```

```
}
```

```
void loop(void){
  if(mySerial.available()){
    Serial.print(mySerial.readString());
}
```

```
if(Serial.available()){
   String cmd = Serial.readString();
   cmd.trim();
   if(cmd == "measure"){
      measure();
   }else{
      //do not use println because it sends \r\n and while
      //sending \n the sigfox module is already sending response
      //and software serial has only half duplex
   mySerial.print(cmd);
   mySerial.print("\n");
   }
}
```


}

static unsigned long last = 0; if((millis() - last) > 660000){ last = millis(); measure(); }

}

2. System Functional Description

2.1. UART AT Command Interface

The UART AT command interface provides a set of commands to control the operation of the LPWAN Sigfox node.

AT command	Name	description
AT	Dummy Command	Just return 'OK' and does nothing else. Can be
		used to check communication.
AT\$SB=bit[,bit]	Send Bit	Send a bit status (0 or 1). Optional bit flag
		indicates if AX-SFEU should receive a downlink
		frame.
AT\$SF=frame[,bit]	Send Frame	Send payload data, 1 to 12 bytes. Optional bit flag
		indicates if AX-SFEU should receive a downlink
		frame.
AT\$SO	Manually send out of	Send the out-of-band message.
	band message	
AT\$TR?	Get the transmit repeat	Returns the number of transmit repeats.
AT\$TR=uint	Set transmit repeat	Sets the transmit repeat.
ATSuint?	Get Register	Query a specific configuration register's value.
		See chapter "Registers" for a list of registers.
ATSuint=uint	Set Register	Change a configuration register.
ATSuint=?	Get Register Range	Returns the allowed range of registers.
AT\$IF=uint	Set TX Frequency	Set the output carrier macro channel for Sigfox
		frames.
AT\$IF?	Get TX Frequency	Get the currently chosen TX frequency.
AT\$DR=uint	Set RX Frequency	Set the reception carrier macro channel for Sigfox
		frames.
AT\$DR?	Get RX Frequency	Get the currently chosen RX frequency.
AT\$CW=uint,bit[,	Continuous Wave	The run emission tests for Sigfox certification it is
uint_opt]		necessary to send a continuous wave, i.e. just the
		base frequency without any modulation.
		Parameters:

		Name	Ran	ge	De	scription
		Freque-		000000-		ntinuous wave
		ncy		9999999, 0		quency in Hz.
		,		,.		e 868130000
						Sigfox or 0 to
						ep previous
						quency.
		Mode	0, 1			able or disable
		widue	0, 1			rier wave.
		Power	0-14	1		m of signal
		FOWEI	0-14	+		fault: 14
ATCCD-wint ont	Test Mode: TX constant	For omics	ion tost	ing it is usof		
AT\$CB=uint_opt,				-		send a specific
bit	byte	-		-		pecifies the byte
				for a (pseud	o-)ra	ndom pattern.
		Paramete	ers:	2		.
		Name		Range		Description
		Pattern		0-255, -1		Byte to send.
						Use '-1' for a
						(pseudo-
)random
						pattern.
		Mode		0, 1		Enable or
						disable
						pattern test
						mode.
AT\$T?	Get Temperature	Measure 1/10 th of a		•	re an	d return it in
AT\$V?	Get Voltages				oltag	e measured
				ansmission i	-	
AT\$I=uint	Information	-		roduct infor		
, ci și anic				Name & Ve		
						EU 1.0.6-ETSI
			Contact		01 31	10 1.0.0 1151
				Response:		
			nfo@lp\	•		
				evision lower	r but	0
				Response: 8	•	e
			· · ·			
				evision uppe	•	e
			-	Response: C		
			-	rmware Vers		
				Response: 1		
				rmware Vers		
				Response: C		
				-	eque	ency Band etc.
			EU/US))			
			-	Response: E		
				e VCS Versio		
		E	xample	Response: \	/1.0.	2-36

		9: SIGFOX Library Version
		Example Response: DL0-1.4
		10: Device ID
		Example Response: 00012345
		11: PAC
		Example Response: 0123456789ABCDEF
AT\$P=uint	Set Power Mode	To conserve power, the AX-SFEU can be put to
AT SF-ullit	Set Fower Mode	sleep manually. Depending on power mode, you
		will be responsible for waking up the AX-SFEU
		again!
		0: Software reset (settings will be reset to
		values in flash)
		1: Sleep (send a break to wake up)
		2: Deep sleep (toggle GPIO9 or RESET_N pin
		to wake up; the AX-SFEU is not running
		and all settings will be reset!)
AT\$WR	Save Config	Write all settings to flash (RX/TX frequencies,
		registers) so they survive reset/deep sleep or loss
		of power.
		Use AT\$P=0 to reset the AX-SFEU and load
		settings from flash.
AT:Pn?	Get GPIO Pin*	Return the settings of the GPIO Pin n; n can range
		from 0 to 9. A character string is returned
		describing the mode of the pin, followed by the
		actual value. If the pin is configured as analog pin,
		then the voltage (range 0 1 V) is returned. The
		mode characters have the following meaning:
		Mode Description
		0 Pin drives low
		1 Pin drives high
		Z Pin is high impedance input
		U Pin is input with pull-up
		A Pin is analog input (GPIO pin 03 only)
		T Pin is driven by clock or DAC (GPIO pin
		0 and 4 only)
		The default mode after exiting reset is U on all
		GPIO pins.
AT:Pn=?	Get GPIO Pin Range*	Print a list of possible modes for a pin. The table
		below lists the response.
		Pin Mode
		P0 0, 1, Z, U, A, T
		P1 0, 1, Z, U, A
		P2 0, 1, Z, U, A
		P3 0, 1, Z, U, A
		P4 0, 1, Z, U, T
		P5 0, 1, Z, U
		P6 0, 1, Z, U
		10 0, 1, 2, 0

		P7 0, 1, Z,		
		P8 0, 1, Z, P9 0, 1, Z,		
AT: Dia una a dia		, , ,		
AT:Pn=mode	Set GPIO Pin*	Set the GPIO pin	mode. nodes see the co	
	Cat CDIO Dia Analag			
AT:ADC Pn[-Pn	Get GPIO Pin Analog	Measure the voltage applied to a GPIO pin. The command also allows measurement of the		
[(1V 10V)]]?	Voltage*		ce across two GP	
		-		ange may also be
			or 10 V. Note how	• •
			es must not excee	
			command returns	-
		_	Ill scale range (1	
			PIO pins referen	
			log mode before	
		command.	-	-
AT:SPI[(A B C D)	SPI Transaction*	This command c	locks out bytes o	n the SPI port.
]=bytes		The clock freque	ncy is 312.5 kHz.	The command
			s read on MISO d	
			ocking mode ma	y be specified
		(default is A):	1	,
		Mode	Clock	Clock Phase
			Inversion	
		A	Normal	Normal
		В	Normal	Inverted
		С	Inverted	Normal
		D	inverted	Inverted
		SEL (GPIOx)]
		MOSI D7	D6 (D5 (D4 (D3)	D2 (D1) D0
		MISO D7	D6 (D5 (D4 (D3	D2 (D1) D0
		A		
		scк / в		
		с		
		Note that SEL, if	needed, is not ge	enerated by this
			nust instead be d	•
		-	ommands (AT:Pn	•
AT:CLK=freq,reffr	Set Clock Generator*	Output a square	wave on the pin	(s) set to T
eq		mode. The frequ	ency of the squa	re wave is (freq /
			ossible values for	•
			0000, 5000000, 2	•
			0, 312500, 15625	0. Possible
		values if freq are		
AT:CLK=OFF	Turn off Clock	Switch off the cl	ock generator	
	Generator*			
AT:CLK?	Get Clock Generator*		ngs of the clock g	
		numbers are ret	urned, freq and r	effreq.

AT:DAC=value	Set ΣΔ DAC*	Output a $\Sigma\Delta$ DAC value on the pin(s) set to T mode. Parameter value may be in the range -3276832767. The average output voltage is (1/2 + value / 2 ¹⁷) × VDD. An external low pass filter is needed to get smooth output voltages. The modulation frequency is 20 MHz. A possible low pass filter choice is a simple RC low pass filter with R = 10 k Ω and C = 1 μ F.
AT:DAC=OFF	Turn off ΣΔ DAC*	Switch off the DAC
AT:DAC?	Get ΣΔ DAC*	Return the DAC value
AT\$TM=mode,co nfig	Activates the Sigfox Testmode	 Available test modes: 0. TX BPSK Send only BPSK with Synchro Bit + Synchro frame + PN sequence: No hopping centered on the TX_frequency. Config bits 0 to 6 define the number of repetitions. Bit 7 of config defines if a delay is applied of not in the loop 1. TX Protocol: Tx mode with full protocol with Sigfox key: Send Sigfox protocol frames with initiate downlink flag = True. Config defines the number of repetitions. 2. RX Protocol: This mode tests the complete downlink protocol in Downlink only. Config defines the number of repetitions. 3. RX GFSK: RX mode with known pattern with SB + SF + Pattern on RX_frequency (internal comparison with received frame ⇔ known pattern = AA AA B2 27 1F 20 41 84 32 68 C5 BA AE 79 E7 F6 DD 9B. Config defines the number of repetitions. 4. RX Sensitivity: Does uplink + downlink frame with Sigfox key and specific timings. This test is specific to SIGFOX's test equipments & softwares. 5. TX Synthesis: Does one uplink frame on each Sigfox channel to measure frequency synthesis step.
AT\$SE	Starts AT\$TM-3,255 indefinitely	Convenience command for sensitivity tests.
AT\$SL[=frame]	Send local loop	Sends a local loop frame with optional payload of 1 to 12 bytes. Default payload: 0x84, 0x32, 0x68,

		0xC5, 0xBA, 0x53, 0xAE, 0x79, 0xE7, 0xF6, 0xDD,
		0x9B.
AT\$RL	Receive local loop	Starts listening for a local loop.

* not applicable on LPWAN Sigfox node, there is no GPIO pins connected

Registers

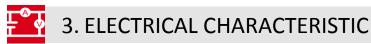
Number	Name	Description	Default	Range	Units
300	Out Of Band	AX–SFEU sends periodic static	24	0-24	Hours
	Period	messages to indicate that they are			
		alive. Set to 0 to disable.			
302	Power Level	The output power of the radio.	14	0-14	dBm

2.1.1. Reading ID and PAC example

AT com	mand	Description
AT\$I=1	0	Return device ID
AT\$I=1	1	Return PAC

2.1.2. Sending data example

AT command	Description
AT\$SF=10AA	Send value 0x10AA to Sigfox network. Returns "OK".
AT\$SF=10AA,1	Send 0x10AA with downlink request. Returns "OK" and "RX=00
	00 00 00 00 00 00 00", where "00" represents received data.


2.1.3. Measuring

	-
AT command	l Description
AT\$V?	Return current voltage and voltage measured during the last
	transmission in mV.
AT\$T?	Get internal temperature in 1/10 th of a degree Celsius.

2.1.4. Sleep mode

AT command	Description
AT\$P=1	Enter sleep mode. Send a break ('\n') to wake up.
AT\$P=2	Enter deep sleep mode. Make power reset module to wake up.

2.2. Absolute Maximum Ratings

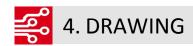
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

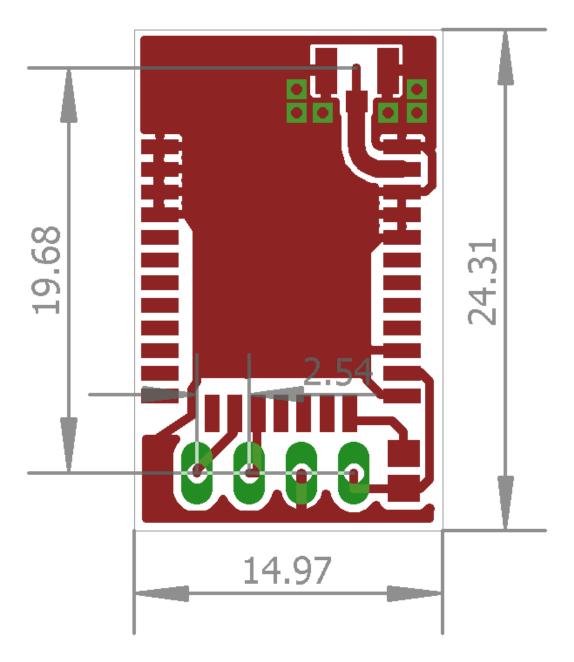
Symbol	Parameter	Rating	Unit
VCC	Module input voltage	-0.5 to 5.5	V
OT	Operating Temperature	-30 to +85	°C
ST	Storage Temperature	-40 to +125	°C

2.3. DC Characteristics

Symbol	Parameter	Min	Тур.	Max	Unit
VCC	Module input voltage	1.8	3.3	3.6	V
Current	Tx Current (@"15" setting, CW)	-	65	-	mA
	Tx Current (@"14" setting, CW)	-	54	-	mA
	Rx Current	-	15	-	mA
	Sleep Current	-	2	-	μΑ

2.4. I/O Specifications


Symbol	Parameter	Min	Тур.	Max	Unit
VIH	High level input voltage @VCC=3.3V	2	-	-	V
VIL	High level input voltage @VCC=3.3V	-	-	0.8	V


2.5. RF Specifications

Conditions: VCC=3.3V, Temp=25°C

Parameter	Min	Тур.	Max	Unit
RF Frequency TX		868.130		MHz
RF Frequency RX		869.525		MHz
Tx output power (at "15" setting)	12.5	13.5	15.5	dBm
Tx output power (at "14" setting)	11.5	12.5	14.5	dBm
Frequency Error Tolerance (+25°C)	-2.5	-	+2.5	ppm
2 nd Harmonics (conducted)	-	-37	-35	dBm
3 nd Harmonics (conducted)	-	-41	-35	dBm
Rx Sensitivity (@600bps, GFSK)	-127	-		dBm
Rx Spurious Emission (30MHz to 12.75GHz)			-54	dBm

